Accession number:20121214878649
Title: Passive imaging and emissivity measurement with a 4K-cryocooled terahertz photoconductive detector
Authors: Aoki, Makoto (1); Tripathi, Saroj R. (2); Takeda, Masanori (1); Hiromoto, Norihisa (1)
Author affiliation: (1) Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011, Japan; (2) Eco Topia Science Institute, Nagoya University Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
Corresponding author: Hiromoto, N. (dnhirom@ipc.shizuoka.ac.jp)
Source title: IEICE Electronics Express
Abbreviated source title: IEICE Electron. Express
Volume: 9
Issue: 5
Issue date: 2012
Publication year: 2012
Pages: 333-338
Language: English
E-ISSN: 13492543
Document type: Journal article (JA)
Publisher: Institute of Electronics Information and Communication Eng., Annex 3F, 5-22, Shibakoen 3 chome, Minato-ku, Tokyo, 105-0011, Japan
Abstract: We have demonstrated terahertz (THz) passive imaging of room-temperature objects using a 4 K-cryocooled THz photoconductive detector with background limited infrared performance (BLIP) at around 1.5-2.5THz. Images of a safety razor blade and a coin concealed in a plastic package or an envelope are successfully obtained with spatial resolutions of wavelength order using the THz passive imaging system. We have compared the measured THz intensity of several materials with emissivities calculated using the reported optical constants. The result shows that the THz intensity has a good linear relation to the emissivity, which means THz emissivity of an unknown material can be estimated at a room-temperature with the THz passive imaging system. © IEICE 2012.
Number of references: 11
Main heading: Electromagnetic wave emission
Controlled terms: Detectors - Imaging systems - Optical constants - Photoconductivity
Uncontrolled terms: Background-limited infrared performance - Emissivity - Linear relation - Passive imaging - Photoconductive detectors - Plastic packages - Razor blades - Room temperature - Sensing - Spatial resolution - Tera Hertz
Classification code: 711 Electromagnetic Waves - 741 Light, Optics and Optical Devices - 741.1 Light/Optics - 746 Imaging Techniques - 914 Safety Engineering
DOI: 10.1587/elex.9.333
Database: Compendex
Compilation and indexing terms, Copyright 2012 Elsevier Inc.