412.

Accession number:12988002

Title:Generation of high-frequency terahertz waves in periodically poled LiNbO₃ based on backward parametric interaction

Authors: Ruolin Chen (1); Guan Sun (1); Guibao Xu (1); Ding, Y.J. (1); Zotova, I.B. (2)

Author affiliation:(1) Dept. of Electr. & amp; Comput. Eng., Lehigh Univ., Bethlehem, PA, United

States; (2) ArkLight, Center Valley, PA, United States

Source title: Applied Physics Letters

Abbreviated source title: Appl. Phys. Lett. (USA)

Volume:101

Issue:11

Publication date:10 Sept. 2012

Pages:111101 (3 pp.)

Language:English

ISSN:0003-6951

CODEN: APPLAB

Document type:Journal article (JA)

Publisher: American Institute of Physics

Country of publication:USA

Material Identity Number: AB34-2012-042

Abstract:Backward terahertz pulses at high frequencies are generated in multi-period periodically poled LiNbO₃ using ultrafast pulses of a regenerative amplifier. The highest frequencies generated by us are centered at 4.8 THz at the poling period of 7.1 μm, corresponding to the output wavelength of 62.5 μm. Enhancement factors as large as 61 in the output powers are achieved and analyzed due to resonance-enhanced nonlinear optical coefficients.

Number of references:17

Inspec controlled terms:lithium compounds - optical constants - terahertz wave spectra

Uncontrolled terms: resonance-enhanced nonlinear optical coefficient - regenerative amplifier - ultrafast pulse - backward parametric interaction - high-frequency terahertz wave - frequency 4.8 THz - wavelength $62.5 \text{ mum} - \text{LiNbO}_3$

Inspec classification codes: A7870G Microwave and radiofrequency interactions with condensed matter - A7820D Optical constants and parameters (condensed matter)

Numerical data indexing:frequency 4.8E+12 Hz;wavelength 6.25E-05 m

Chemical indexing:LiNbO3 NbO3 O3 Li Nb O

Treatment:Experimental (EXP)

Discipline:Physics (A)

DOI:10.1063/1.4751843

Database:Inspec

Copyright 2012, The Institution of Engineering and Technology