文 章 搜 索
 
最新 NEW10
1  “热门”新形式的显微
2  革命性雷达:集成太赫
3  太赫兹研究动态&nb
4  操纵极性液体中电子和
5  宽可调太赫兹激光器增
6  采用太赫兹成像,从层
7  物理学家揭示了扭曲双
8  没有超级透镜的超级透
9  高通量太赫兹成像:进
10  第九届全国太赫兹科学
热门 TOP10 点击
 太赫兹科学技术的新发 70584
 第五届全国太赫兹科学 69596
 (2011.10-2 64883
 (2011.7-20 38030
 (2012.10-2 34371
 (2011.4-20 32599
 基于光学方法的THz 27217
 石墨烯在微波光子学中 26763
 (2012.04-2 26129
 2007年国际红外与 25544
     文 章 新 闻 中 心
人工粒子诱发Fano效应助推高灵敏度传感器的研究
发布时间:2017-04-05 09:46:39 阅读:4928

来源:上海理工大学

    太赫兹科学协同创新中心合作研究又取得成果。太赫兹科学协同创新中心成员:上海理工大学庄松林院士研究团队陈麟副教授和朱亦鸣教授、美国俄克拉荷马州立大学张伟力教授、东南大学崔铁军教授等,在太赫兹频段人工粒子的Fano效应中取得重要进展。通过在周期结构金属粒子中巧妙引入缺陷,Q值的多极子Fano效应的激发(图1),其FoM(Fano强度与Q值的乘积)是普通的分裂环微腔结构(SRR)的2.5倍。利用这种人工粒子,不仅可以探测附着在人工原子表面的薄膜(物质)的光学特性,还可以通过将原子的Fano振荡频率设计在接近物质吸收峰的临近位置来探测样品的性质以及监控分解物层的降解特性和固体(液体化合物)的动态化学反应过程;此外,通过结构化的表面与特异性噬菌体结合,可以实现细菌的选择性检测(Fano共振位置的变化可能与细菌样品的浓度直接相关),从而实现细菌病原体的高效无标记检测。研究成果“Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials”发表在光学材料领域著名期刊Advanced Optical Materials上(DOI: 10.1002/adom.201600960,Advanced Optical Materials为Advanced Materials的子刊, IF=5.359)。该研究得到了国家973计划,国家重大科学仪器专项,国家自然基金重点项目和美国NSF等的资助。

图1 缺陷人工粒子激发的Fano效应

    此外,该课题组去年还提出了一种太赫兹频段的高Q微腔激发的新结构(图2(a)),用容易激发的C型谐振腔来间接激发暗态的微腔模式,并在实验中观察到了不同阶数的微腔模式(图2(b))。该成果发表在Nature Group出版集团的Scientific Reports期刊(Scientific Reports, 6, 22027 (2016)),美国加州大学伯克利分校研究人员J.-H. Kang在邀请的综述文章《Local Enhancement of Terahertz Waves in Structured Metals》 (IEEE Transactions on Terahertz Science and Technology, 6(3), 371-381, 2016)中对这项工作进行了详细介绍,并认为这是spoof plasmon领域的重要工作(图3),该文章已被美国Notre Dame大学,加拿大蒙特利尔理工学院,英国伦敦大学,意大利比萨NEST纳米科学研究所等研究机构引用14次。

图2 (a) 结构及扫描电镜图; (b) 激发出的阶数不同的微腔模式

图3 学术评价

 
 

    太赫兹研发网    太赫兹科学与技术在线杂志    电子学会太赫兹分会 打印本页 | 关闭窗口

版权所有© 2006-2022 太赫兹研发网 www.thznetwork.org.cn
网站地址:四川省成都市成华区建设北路二段四号 邮编:610041
蜀ICP备06010246号-1